
www.manaraa.com

Transactional Acceleration of Concurrent Data Structures

Yujie Liu
Lehigh University

yul510@lehigh.edu

Tingzhe Zhou
Lehigh University

tiz214@lehigh.edu

Michael Spear
Lehigh University

spear@cse.lehigh.edu

ABSTRACT
Concurrent data structures are a fundamental building block for
scalable multi-threaded programs. While Transactional Memory
(TM) was originally conceived as a mechanism for simplifying the
creation of concurrent data structures, modern hardware TM sys-
tems lack the progress properties needed to completely obviate tra-
ditional techniques for designing concurrent data structures, espe-
cially those requiring nonblocking progress guarantees.

In this paper, we introduce the Prefix Transaction Optimization
(PTO) technique for employing hardware TM to accelerate existing
concurrent data structures. Our technique consists of three stages:
the creation of a prefix transaction, the mechanical optimization of
the prefix transaction, and then algorithm-specific optimizations to
further improve performance. We apply PTO to five nonblocking
data structures, and observe speedups of up to 1.5x at one thread,
and up to 3x at 8 threads.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming

Keywords
Lock-Freedom, Transactional Memory, Concurrency, Synchroniza-
tion

1 Introduction
Modern parallel programs rely on concurrent data structures (CDS)
to achieve scalable synchronization. Over the past two decades,
dozens of concurrent data structures have been proposed, providing
highly scalable stacks, queues, lists, trees, hash tables, skiplists,
heaps, and many other data structures.

The design of concurrent data structures is challenging, for a
number of reasons. First, they must achieve good performance
across a variety of workloads. An implementation ought to have
low latency when accessed by a single thread. This property is
valuable for applications whose threads rarely access the data struc-
ture at the same time: if latency is too high, then the programmer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’15, June 13–15, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3588-1/15/06 ...$15.00.
Update with your DOI string http://dx.doi.org/10.1145/2755573.2755598.

may instead opt to protect a sequential data structure with a coarse-
grained lock. However, an implementation should also exhibit high
scalability. That is, in highly concurrent workloads, threads should
not impede each others’ progress when they access disjoint parts of
the data structure. There is typically a tension between these goals:
to ensure good scalability, a greater amount of metadata manipula-
tion is required to coordinate potential concurrent accesses to the
data structure; however, the injection of metadata introduces over-
head to the streamlined sequential implementations, and moreover,
metadata accesses often require the use of expensive atomic syn-
chronization primitives, such as compare-and-swap (CAS). Intro-
ducing fine-grained metadata can result in more atomic primitives
per operation, and thus more latency.

Secondly, many programs expect progress guarantees from con-
current data structures. Wait-freedom [19], the strongest progress
guarantee, ensures that at any point in an execution, regardless of
the states of other threads, there exists a finite bound on the num-
ber of steps for any thread to complete its operation. Wait-free al-
gorithms often require expensive synchronization among threads.
The weaker guarantee of lock-freedom [20], where at any point
in a program’s execution there exists some thread that can com-
plete its operation in a finite number of steps, has been achieved
in many practical data structures. However, even in lock-free data
structures, there is often significant overhead to make concurrent
updates to multiple locations appear atomic (e.g., by simulating a
multi-word compare-and-swap [15, 32]).

Hardware Transactional Memory (HTM) [21] was originally de-
signed to simplify the task of creating concurrent data structures.
The idea behind HTM is simple: programmers mark regions of
code that ought to execute as a single, indivisible operation, and
then the hardware runs these “transactions” concurrently, while
tracking their memory accesses. By tracking accesses, the hard-
ware can identify conflicting memory accesses among transactions.
By also providing a buffering mechanism, the hardware can abort,
roll-back, and retry some of the transactions involved in a conflict,
so that each transaction appears to execute in isolation.

Unlike research HTM proposals, the first-generation HTM sys-
tems from IBM [23, 44] and Intel [22] expose significant limita-
tions, which limit their suitability to lock-free programming. These
“best effort” HTMs [7, 27] do not guarantee progress for arbitrary
transactions: a transaction attempt will fail if it (a) attempts to
access too many distinct locations; (b) executes for longer than
a scheduler quantum of the operating system; or (c) attempts to
perform an unsupported operation, such as a system call. Trans-
action attempts can also fail due to memory accesses that conflict
with concurrent operations from transactions, or accesses that con-
flict with concurrent nontransactional code. This property, called
“strong atomicity” [2], is a natural outcome of implementing HTM

www.manaraa.com

through the cache coherence protocol. It also allows for clever
composition of transactional and nontransactional code [7, 8, 46].

Even if these limitations did not exist, it is unlikely that HTM
could ever fully replace the best concurrent data structure imple-
mentations. As recently reported by Gramoli [13], concurrent data
structures implemented directly from atomic primitives (i.e. CAS)
tend to provide the best performance in comparison to those imple-
mented by using locks or transactions.

This paper explores how HTM might still benefit the design and
implementation of concurrent data structures. Specifically, we pro-
pose a methodology, called Prefix Transaction Optimization (PTO),
by which HTM can be used to accelerate an existing implementa-
tion. There are three components of PTO, which vary in terms of
the degree to which they can be automated, the amount of implementation-
specific knowledge needed, and the potential gain. In the first step,
we create a prefix transaction to execute a sequence of steps in the
existing implementation, which uses HTM but may fail. In the
second step, we mechanically optimize this prefix through strength
reduction and elimination of corner cases [38], and other classic
compiler optimizations. In the third step, we modify the original
algorithm so as to introduce minimal “overhead” while affording
more aggressive optimization of the prefix transaction.

PTO offers many compelling properties. It preserves the progress
guarantees of the original algorithm, which is an improvement over
many approaches to transactional acceleration of concurrent pro-
grams. It is also a composable technique, which can be applied
at multiple levels of granularity. PTO optimizations can be linked
together, and the benefits of doing so are (more or less) additive.
Lastly, and most significantly, PTO can dramatically improve per-
formance. We observe speedups of up to 1.5x at one thread, and up
to 3x at 8 threads, on state-of-the-art nonblocking data structures.

2 Prefix Transaction Optimization
In this section, we present the algorithm-agnostic aspects of the
Prefix Transaction Optimization (PTO) technique. Enhancements
and modifications specific to a single data structure or class of data
structures are discussed in Section 3.

2.1 Model
The PTO technique is applicable to concurrent objects implemented
in shared memory using read/write registers and common synchro-
nization primitives (e.g. compare-and-swap, fetch-and-add, etc).
The object interface defines a set of invocable operations.

We adopt the control flow graph representation [37] for each op-
eration (and its sub-operations), where a node represents a step in
the algorithm and an edge represents a transition in the control flow.
We assume each operation has a single start node. For two nodes a
and b in a control flow graph, a dominates b if any code path from
start to b includes a. A superblock is a connected sub-graph where
all nodes are dominated by a single entry node. An edge from a
node within a superblock to one outside is called an exit edge.

We assume that HTM is supported by the architecture via three
instructions: TxBegin starts a transaction, TxEnd commits the
transaction, and TxAbort causes the transaction to abort. The
TxBegin instruction can return more than once: if a transaction
cannot commit for any reason, then the effects of the transaction are
undone, and control returns to the point of TxBegin with a return
value indicating the cause of the inability to commit. A return value
of OK indicates that the code is running as a transaction.

HTM is assumed to provide strong atomicity [2]. When a hard-
ware transaction is running, none of its effects are visible to any
concurrent code; all effects become visible atomically at TxEnd.

During the execution of the transaction, if any concurrent transac-
tion performs a conflicting access, the HTM will choose (at least)
one transaction to abort. If any nontransactional code performs a
conflicting access, the transaction will immediately abort. Upon
any abort, control will return to TxBegin, where the program can
decide whether to attempt the transaction again.

2.2 The Prefix Transaction Transformation
Given a superblock B in a control flow graph G, the Prefix Trans-
action Transformation (illustrated in Figure 1) is constructed by at-
tempting to execute the superblock using a hardware transaction.
If that attempt fails, then the original version of code is invoked,
without the use of a transaction. More precisely:

DEFINITION 1. Let B be a superblock of a control flow graph
G. The Prefix Transaction Transformation is a function TB(G) that
maps G to G′, a copy of G with B replaced by B′, such that:
• TB is a copy of T where a TxEnd instruction is inserted at

each exit edge, and zero or more TxAbort instructions are
inserted at any edges of T except the exit edges;
• S is a TxBegin instruction with a branch to the dominator

of TB if the return value is OK and a branch to the dominator
of B otherwise;
• Let B′ be the superblock dominated by S with all nodes of

TB and B included.

Given a transformation TB(G) defined in Definition 1, we say
B′ is the optimized superblock. Inside B′, we say TB is the prefix
transaction of B, and B is the fallback.

The following theorems capture basic properties of the Prefix
Transaction Transformation. We first prove the correctness of our
transformation, by constructing a refinement mapping [1] from the
transformed implementation to the original (Theorem 2). We then
prove the progress guarantee of the original implementation is pre-
served by the transformation (Theorem 3). Finally, implied by the
theorems, we observe that the program may choose to explicitly
abort a transaction at any point (within the transaction) without
compromising correctness or progress conditions.

THEOREM 2 (REFINEMENT). Let G be the control flow graph
of some operation of an implementation I , and let I ′ be the imple-
mentation with TB(G) applied to I . I ′ refines I .

PROOF SKETCH. The mapping of states is simply an identical
function that maps the states of I ′ to the states of I . For a process
p taking a step in I ′, if the step is not a transactional instruction or
access, we let p take a corresponding step in I . For a TxBegin,
TxAbort, or a transactional access step in I ′, p takes no step in I .
For a TxEnd step in I ′, let k be the number of steps p has taken in-
between the TxEnd the last TxBegin step, we let process p take
k steps in I .

THEOREM 3 (PROGRESS PRESERVATION). Let G be the con-
trol flow graph of some operation of a lock-free (or wait-free) im-
plementation I , and let I ′ be the implementation with TB(G) ap-
plied to I . I ′ provides lock-free (or wait-free) progress.

PROOF SKETCH. Suppose I is lock-free. Then some operation
in I completes if process p takes a bounded number of steps. For
a given configuration c of I , let k be this bound. Then at most k
steps are spent in superblock B before some operation completes,
and since B contains at least one step, it can be executed no more
than k times before some operation completes.

Let f be the refinement mapping constructed in Theorem 2. For
a configuration c′ in I ′ where c = f(c′), process p can spend at

www.manaraa.com

B B’

entry

status ← TxBegin

s2

s3

s4

s5

s1

TxEnd TxEnd

entry

exit1 exit2

status = OK status ≠ OK

TB

s2

s3

s4

s5

s1

exit1 exit2

s2

s3

s4

s5

s1

B

B’
status ← TxBegin

s2

s3

s1

TxEnd

TxAbort

entry

exit1 exit2

status = OK status ≠ OK

TB

s2

s3

s4

s5

s1

B

Figure 1: Prefix Transaction Transformation

most k steps in a transaction (excluding the TxBegin, TxAbort
and TxEnd steps) before some operation completes. A committed
or aborted transaction takes at most (k + 3) steps including the
TxBegin, TxAbort and TxEnd steps. In case the transaction
aborts, at most (2k + 3) steps are spent to execute the optimized
superblock. Hence, we know in configuration c′, some operation
completes within k · (2k + 3) steps taken by process p.

Proving the preservation of wait-free progress employs the sim-
ilar technique.

2.3 Optimizing Prefix Transactions
We now turn our discussion to how to optimize the prefix transac-
tion. We first present optimizations that can be easily identified and
performed by a compiler using canonical static analyses.

Eliminating Synchronization: Correctness proofs of concur-
rent data structures often assume sequential consistency [26]. Im-
plementations, in turn, must entail memory fences to enforce ex-
plicit ordering on architectures with weaker memory models.

Within a prefix transaction, memory fences can be elided, since
they are subsumed by the implicit memory fences of TxBegin and
TxEnd instructions, and atomic synchronization primitives, such
as compare-and-swap and read-modify-write operations, can be re-
placed with their corresponding loads, stores, and branches.

Eliminating Redundant Loads: Double-checking is a tech-
nique used in many concurrent data structures [9,35]. Implementa-
tions employ double-checking to ensure a consistent view of mul-
tiple memory locations. In the prefix transaction, a single read to
a shared location suffices, since the second read will always return
the same value (given the transaction does not perform a write to
the location in-between the reads); any conflicting write to the lo-
cation will cause the transaction to abort.

For implementations that use the atomic compare-and-swap prim-
itive, the compare-and-swap is usually attempted after a preceding
read to the location. Since in a transaction we convert the compare-
and-swap to a read followed by a conditional write, the read (pro-
duced by the conversion) can coalesce with the former read.

We also observe that many search data structures [9, 45] em-
ploy a search phase, followed by an update phase that performs
its writes after validating selected locations accessed in the search

phase. These implementations are likely to benefit from the elimi-
nation of redundant loads enabled by our transformation.

Eliminating Redundant Stores: Nonblocking data structures
often exploit intermediate states during an update operation to al-
low helping from concurrent threads. The size of intermediate
states may vary from unused bits embedded in the data fields [14,
28] to complex, dynamically-allocated auxiliary structures [9, 39].
Fundamentally, these intermediate states are introduced to over-
come the difficulty that traditional synchronization primitives can
update only a single word at a time.

It is commonly seen in nonblocking algorithms [9,29,39,41] that
operations first attempt to change several locations from a clean
state to some intermediate state, and then restore them back to a
clean state. Given that an update is performed within a transac-
tion, and all stores to a location appear atomically, the temporary
change to intermediate states can be eliminated. Furthermore, if
dynamic memory allocations are involved to create intermediate
objects, these allocations can be eliminated together with the silent
stores, mitigating pressure on the shared allocator object.

In CDSs using hazard pointers [34] or reference counts [42] to
manage dynamic memory, intermediate updates to the hazard lists
(i.e., insertion followed by removal) or to the reference counters
(i.e., increment followed by decrement) can be safely eliminated as
redundant stores in the prefix transaction.

2.4 Avoiding Helping in Prefix Transactions
Although helping is the key idea behind many nonblocking concur-
rent data structures, it tends to increase contention among threads
in some cases [16, 25, 29, 36].

When a prefix transaction observes states in which it must per-
form helping to make progress, it may be preferable to simply abort
the transaction and switch to executing the lock-free fallback. The
rationale governing such decision is twofold: First, when a prefix
transaction determines to help, the situation suggests a concurrent
operation is accessing locations touched by the transaction (and
vice versa) and is likely to create a conflict that causes the transac-
tion to abort. Thus, the explicit abort can serve as an ad-hoc backoff
mechanism to avoid the contention in the first place. Second, if the
prefix transaction is optimized (as discussed in Section 2.3) so that
it does not introduce intermediate states, it can be desirable to max-

www.manaraa.com

imally avoid helping (which introduces intermediate states) in the
prefix transaction for the sake of improving total throughput.

From a pragmatic perspective, we argue that it is fairly straight-
forward for a concurrent data structure designer to identify the help-
ing code paths in the algorithm, and decide whether to replace them
with explicit aborts in the prefix transactions. Examples of how
to make such choices are discussed in subsequent sections of the
paper. On the other hand, we found that in most nonblocking al-
gorithms, a helping code path can be defined as an unreachable
sub-path in the control flow graph of a single-threaded executions.
A trivial example is the code to handle a failed compare-and-swap
operation. Using this definition as a heuristic, an optimizing com-
piler can collect information from a single-threaded profile run, and
(approximately) identify the helping paths for making optimization
decisions.

2.5 Recursive Optimizations
Prefix Transaction Transformation is a local optimization, which
means it can be applied to a whole operation or to individual com-
ponents (superblocks) of the operation. More importantly, the opti-
mization can be repeatedly applied on optimized code until achiev-
ing the best performance.

The simplest example of an recursive optimization is to allow an
aborted prefix transaction to retry before attempting the fallback.
For instance, the following transformation attempts the same prefix
transaction TB twice before switching to the fallback:

TB(TB(G))

A more powerful use of recursive optimization is to compose op-
timizations in a hierarchical structure. Suppose that in the control
flow graph G of some operation, superblock B is a sub-graph of
superblock A. The following transformation:

TB(TA(G)) where B ⊂ A

first attempts the prefix transaction TA, and in the fallback path of
TA, the program can still benefit from the optimizations of TB(G).

Hierarchical composition has an important impact in practice:
Applying the transformation on larger superblocks maximizes the
opportunity for eliminating redundancy (i.e. loads, stores, and fences),
but makes it harder for transactions to make progress under con-
tention, and thus, hurts scalability. Applying the transformation
on smaller superblocks facilitates making progress, but reduces the
opportunity to reduce latency. Composing optimizations makes it
possible to achieve low latency and high scalability at the same
time. We also notice that, by Theorem 3, applying the transforma-
tion for a bounded number of times preserves the progress guaran-
tees of the original implementation.

3 Applying Prefix Transaction Optimization
The PTO technique presented in Section 2 does not require much
algorithm-specific knowledge, though a programmer with knowl-
edge about expected common paths may insert explicit aborts to
increase optimization opportunities. We now turn our attention to
the technical details of applying PTO to specific concurrent data
structures, including additional algorithm-specific optimizations.

3.1 Data Structures with Simple Applications
Mindicators We first consider the Mindicator data structure [28].
Like SNZI [10] and the f-array [24], the Mindicator is a static-sized
tree that computes a function over a set of values, where each thread
offers at most one value as an input to the function. The original

Mindicator algorithm uses a marking phase to traverse from a per-
thread leaf up to some point in the tree, and unmarks nodes as it
traverses back to the leaf. Unlike f-Array, not all operations must
traverse to the root; unlike SNZI, additional functions (min, max)
are supported in addition to 0/1 saturating addition.

The application of PTO to the Mindicator did not make use of
any algorithm-specific optimizations, primarily because the tree is
static and hence there is no memory allocation. By applying PTO,
the marking and unmarking steps could be coalesced: marking and
unmarking were previously both implemented as increments to a
per-node counter; with PTO, the counter is incremented once, by
two. This, in turn, eliminated the downward traversal entirely. Af-
ter applying PTO, we tuned the threshold for retries before PTO
falls back to the lock-free slow path. A choice of three attempts
yielded the best performance.

Mounds We also applied PTO to the Mound [29], a heap-like
data structure that implements a priority queue. Like the Mindica-
tor, the Mound is a tree-shaped data structure. However, it is a tree
of sorted lists, where each list is only modified at its head. We did
not choose the Mound because it is the best nonblocking heap or
priority queue. We chose it instead for the value it adds when eval-
uating PTO. Specifically, the Mound employs double-compare-
and-swap (DCAS) and double-compare-single-swap (DCSS) op-
erations throughout its implementation, to perform atomic updates
on up to two locations. This afforded an opportunity to evaluate
the impact of applying PTO locally, e.g., to individual DCAS and
DCSS operations.

In the Mound, insertion consists of a search, followed by a double-
compare-single-swap (DCSS), which is implemented in software
through a sequence of CAS instructions. Removal entails perform-
ing a CAS to remove the top of the heap, and then several DCAS
operations to restore invariants at the root and then on its chil-
dren, recursively. Insertions can barely benefit from PTO, because
they are streamlined and contention-free already: the heap itself
is a static tree, obviating memory management overheads, and the
insertion entails a log-log-depth traversal and just one simulated
DCSS. Similarly, employing PTO on the entire removal operation
is not effective at any level of concurrency, since all concurrent re-
movals contend at the top of the heap. However, it is profitable
to use PTO on a sub-operation of insert and removal, namely the
DCAS/DCSS operations.

Skip Lists Lock-free skip lists [12] are a widely used search data
structure to implement concurrent maps and sets. In the skip list al-
gorithm, an update operation first locates the predecessor and suc-
cessor nodes of a given key value, and then uses a sequence of
compare-and-swap operations to link/unlink the nodes into the hi-
erarchy of lists.

We experimentally determined that local application of PTO was
the only promising technique. We proceeded to apply PTO only to
the insert and remove operations. In an insert operation, we use a
prefix transaction to update the next pointers of the predecessors.
Similarly, in a remove operation, we attempt to mark the deleted
node’s next pointers using a single transaction, instead of perform-
ing individual compare-and-swap operations.

3.2 Nonblocking Binary Search Trees
We now discuss our experience with applying PTO to the nonblock-
ing binary search tree (BST) algorithm created by Ellen et al. [9].
The algorithm implements a set object with insert, remove, and
lookup operations. To achieve lock-freedom, the algorithm em-
ploys a “marking” technique to coordinate concurrent updates to
the BST. During an insert or a remove operation, the thread first

www.manaraa.com

traverses down the tree (the search phase) to locate an appropri-
ate position to perform the update. Then in the update phase, the
thread allocates an operation descriptor (Info record) that contains
sufficient information to allow helping from other threads. The de-
scriptor is installed at nodes involved in the update, using compare-
and-swap operations: one node is marked in an insertion and two
are marked in a removal. An operation linearizes if it successfully
marks all nodes involved in the update. Upon completion, some of
the nodes are restored to a clean state.

We identify two opportunities to apply PTO in the binary search
tree algorithm. The first is to put the entire update operation inside
a transaction. The second is to use a prefix transaction to execute
the update phase, leaving the search phase out of the transaction.
In both choices, we can eliminate the allocation of the descriptor
for an insert operation, because the node is restored to a clean state
at the end of the transaction. For a remove operation, since the al-
gorithm does not restore one of the updated nodes to a clean state,
we cannot safely eliminate its descriptor. However, we can use a
unique, statically-allocated dummy descriptor in place of a dynam-
ically allocated one: When all updates are performed in a transac-
tion, there is no need for helping if the transaction commits, and
the dummy descriptor is simply ignored by subsequent operations.

3.3 Dynamic-Sized Hash Tables
The final data structure we studied is a nonblocking resizable hash
table [30]. The algorithm employs a “freezable set” abstraction
to achieve nonblocking size adjustments. In the hash table, each
bucket is a pointer to a freezable set object, which is implemented
as an unsorted array of elements. All updates to the array are per-
formed via copy-on-write, that is, by creating an updated version
of the array to replace the old one, and then using a compare-and-
swap on the bucket pointer.

A straightforward application of PTO on the hash table appears
barely helpful, since the algorithm is streamlined: In the common
case, an insert or a remove operation on the hash table consists of
a single allocation and an uncontended compare-and-swap on the
bucket pointer. To improve performance, we changed the algorithm
by removing the copy-on-write within transactions.

The idea of our optimization is to perform speculative in-place
writes to the array objects, so that allocations could be avoided in
the common case. When making this change, we attached a counter
to the bucket pointers, so that a transactional update could incre-
ment the counter and modify the bucket in place. Unfortunately,
this can affect the correctness of a concurrent lookup to the bucket.
To prevent errors, we degrade the progress of lookups from wait-
free to lock-free, by requiring lookups to double-check the bucket
pointer counter after they search the bucket.

4 Evaluation
In this section, we evaluate the effectiveness of PTO in accelerat-
ing concurrent data structures. We consider five data structures as
discussed in Section 3, which affords us the ability to look at the
various aspects of PTO in detail.

4.1 Microbenchmarks
We use three microbenchmarks in our experiments:

setbench evaluates of set implementations which support insert,
remove, and lookup operations. Each thread repeatedly invokes a
lookup or an update operation (with equal chance of being an insert
or a remove) with some random value within range.

pqbench evaluates priority queue implementations where each
thread repeatedly invokes a push with some random value or a pop;
the pop returns a null value if the queue is empty.

mbench evaluates Mindicator objects where each thread repeat-
edly invokes an arrive operation with some random value, followed
by a depart operation.

All experiments were conducted on an machine equipped with
an Intel Core i7-4770 CPU running at 3.40GHz, with 8 GB of
RAM. The i7-4770 supports Intel’s Restricted Transactional Mem-
ory (rtm) interface. There are 4 cores, each 2-way multi-threaded,
for a total of 8 hardware threads. The software stack included
Ubuntu 14.04.1 and GCC 4.8.2. All experiments were run in 32-bit
mode, and data points are the average of 5 trials.

4.2 Latency and Scalability Improvement
Figure 2(a) contrasts the performance of the PTO Mindicator with
the original lock-free implementation. We also compare to a ver-
sion in which the Mindicator is protected by a coarse-grained lock,
and the transactional lock elision (TLE) [40] is employed to allow
concurrency. In the experiment, threads repeatedly insert and then
remove a randomly-chosen value; this ensures that some operations
must traverse to the top of the tree. We configured the Mindicator
as a binary tree with 64 leaves, and used the default mapping, where
threads were assigned to leaves from left to right.

There are two important trends: First, we see that at a single
thread, PTO provides latency that is nearly as good as TLE, which
does not have marking, unmarking, or helping phases. Thus we can
conclude that PTO can provide near-optimal single-thread perfor-
mance. Second, we see that whereas TLE scales poorly, due to its
locking fallback, PTO scales comparably to the original lock-free
code. Thus in all cases, PTO is on par with the best performing
algorithm. Furthermore, beyond 4 threads we see that PTO scales
better than the lock-free code. This is a natural consequence of
the workload: when using random keys, as the number of threads
increases, the likelihood that any thread must traverse to the root
decreases. As fewer threads traverse to the root, the likelihood of
conflicts for any thread also decreases, and the prefix transaction
becomes more likely to succeed.

Figure 2(b) shows performance for a workload with an even mix
of insert and removeMin operations on the Mound, using random
keys. Using PTO, we were able to replace up to five CAS opera-
tions with a single transaction for each of the DCAS and DCSS op-
erations. We encapsulated the DCAS in a function, and tuned the
retry parameter once, ultimately settling on a value of four. This
value was used for all DCASes, whether at the (high contention)
root of the Mound, or at leaves.

The main benefit of PTO for the Mound was in removing la-
tency from each DCAS. This result is similar to the finding of Yoo
et al. [46], that coarsening atomic regions via hardware transactions
can amortize some of the costs of atomicity. In terms of concurrent
data structure design, the lesson is that thinking in terms of DCAS
and other simpler primitives remains useful: assuming the avail-
ability of DCAS allowed the Mound designers to split removeMin
into multiple atomic operations, thereby limiting the duration of
contention on the Mound root.

4.3 Impacts on Relative Performance
We next turn our attention to skiplists. We evaluate skiplists in two
settings: as a search data structure (Figure 3) and as a priority queue
(Figure 2(b)).

We began with Gramoli’s skiplist implementation [13]. To cre-
ate a skiplist priority queue, we employed a modified version of the

www.manaraa.com

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Mindicator (Lockfree)
Mindicator (PTO)
Mindicator (TLE)

(a) Mindicators

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Mound (Lockfree)
Mound (PTO)

SkipQ (Lockfree)
SkipQ (PTO)

(b) Priority Queues

Figure 2: Mindicator and Priority Queue Microbenchmarks

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Tree (Lockfree)
Tree (PTO)

Skip (Lockfree)
Skip (PTO)

(a) Lookup=0% Range=512

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Tree (Lockfree)
Tree (PTO)

Skip (Lockfree)
Skip (PTO)

(b) Lookup=34% Range=512

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Tree (Lockfree)
Tree (PTO)

Skip (Lockfree)
Skip (PTO)

(c) Lookup=100% Range=512

Figure 3: Logarithmic Search Data Structure Microbenchmark

Lotan-Shavit technique [31], and made it linearizable by disallow-
ing a pop operation from traversing through an marked node.

While we expected to observe a similar decrease in latency to
the Mound, due to the reduced latency for coarsened atomic oper-
ations, such benefit did not manifest. There are two drivers of this
result. First, the main source of latency is not silo maintenance, but
accessing locations that are not in the cache, during the traversal
stage. According to the criteria in [5], the skiplist implementa-
tion is already close to optimal with respect to concurrency. Thus
at one thread, there was little to gain. The second impediment to
speedup at higher thread counts is that as a silo maintenance oper-
ation traverses the silo, it becomes increasingly prone to conflicts
with concurrent readers. Intel TSX employs a requester-wins [3]
conflict detection strategy, and thus any read to the write set of an
PTO operation causes the PTO operation to fail.

4.4 Additive Benefits in Recursive PTO
PTO is a compositional technique, and can be used to optimize an
entire operation, as well as a portion of its fallback path. To assess
this property, we evaluated the nonblocking BST created by Ellen
et al. [9]. We transliterated the code from Java to C++, replacing
volatile variables with sequentially consistent std::atomic
variables. We also employed an epoch-based memory reclamation
policy, to ensure that locations were not reclaimed while a concur-
rent thread held a reference to them.

We identified two applications of PTO to the BST, which we re-
fer to as PTO1 and PTO2. In PTO1, the entire insert, remove, and
lookup operations are transformed using PTO. By optimizing the
lookup phase, we are able to remove code that double-checks the
values of reads. We were also able to replace sequentially consis-

tent std::atomic accesses with relaxed accesses, which may
avoid processor and compiler fences on some architectures.

As Figure 5(a) shows, PTO1 results in more than 75% higher
throughput at low thread counts. In contrast, PTO2 only optimizes
the update phase of the insert and remove operations. While it also
offers an improvement at all thread counts, the effect is much less
at low levels of concurrency, where search overhead dominates, but
much higher as concurrency increases. The improvement at higher
thread counts is a consequence of a smaller contention window:
since the traversal is not part of the hardware transaction, there are
fewer opportunities to conflict with concurrent transactions. How-
ever, the lookup phase no longer runs in a hardware transaction,
and thus must incur the overheads of double-checking and fences.

In PTO1+PTO2, we employ PTO1, and then use PTO2 within
the fallback path. To fall back all the way to the original lock-
free algorithm, an operation must first fail 2 times in PTO1, and
then 16 times in PTO2. This composition achieves close to the
best of both approaches. Even more remarkably, the composition
of PTO+PTO2 boosts the BST performance to a constant factor
higher than the skiplist set. As Figure 3 shows, the optimized BST
provides the same scalability as the skiplist, but with lower latency.

4.5 Fast Speculative Inplace Updates
We ported the hash table from Java to C++, again using an epoch-
based memory reclamation policy. We applied PTO to each of the
insert, lookup, and remove operations, and then performed algorithm-
specific optimizations to eliminate copy-on-write.

The simple application of PTO does little to benefit updates,
since their overhead is dominated by the cost of allocating a new
bucket, copying the old bucket’s values, and applying the corre-
sponding insert or removal. However, lookup operations show a

www.manaraa.com

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Hash (Lockfree)
Hash (PTO)

Hash (PTO+Inplace)

(a) Lookup=0% Range=64K

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Hash (Lockfree)
Hash (PTO)

Hash (PTO+Inplace)

(b) Lookup=80% Range=64K

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
)

Threads

Hash (Lockfree)
Hash (PTO)

Hash (PTO+Inplace)

(c) Lookup=100% Range=64K

Figure 4: Hash Table Microbenchmark

decrease in latency. When PTO is applied to the lookup, all interac-
tion with the epoch-based reclaimer can be elided. This eliminates
two memory fences and two stores. Given the streamlined code
path, there is a noticeable impact on latency.

Figure 4 presents the performance improvement for this opti-
mization. In a write-only workload, we observe more than 2x
speedup at 8 threads, and 1.8x speedup at one thread. The improve-
ment is a consequence of the elimination of copying, and reduced
interaction with the allocator. Since the allocator can require sys-
tem calls, and its metadata can present a bottleneck, the benefits
increase at higher thread counts.

4.6 What Makes PTO Fast?
Our evaluation shows some dramatic improvements in performance,
particularly for the BST and hash table. However, it also shows
some more modest gains, and fails to improve the skiplist at all.
While the methodology does simplify the task of accelerating a
concurrent data structure, it is still beneficial to be able to analyze
an algorithm and predict whether it will benefit from PTO.

Generalizing our above experiments, we believe that there are
four principal sources of latency that PTO can eliminate:

Memory Fences: Figure 5(b) and (c) present additional results
for the Mound and BST, showing the impact when we did not
elide memory fences within hardware transactions. For both the
Mound, where the placement of fences was hand-optimized, and
the BST, where the placement of fences mirrored their placement
in the equivalent (and necessarily conservative) Java code, we see
that the elimination of fences contributed significantly to savings in
latency. For the Mound, the impact of removing fences was the sole
source of improvement. For the BST, fences were a component of
a suite of techniques that decreased latency.

Double-Checking Reads: Double-checked reads introduce two
costs: not only do they add more instructions to the operation, but
they also introduce branches, for when the check fails. In Fig-
ure 5(c), we break down sources of reduced latency for the BST
write-only experiment. While fence removal plays a significant
role, the baseline improvement comes without it. At low thread
counts, where the entire operation is enclosed in a transaction, the
credit is largely due to eliminating double-checking of reads.

Redundant Stores: In the Mindicator and Mound, the process
of marking and unmarking nodes during an update or DCAS cre-
ates unnecessary work. Eliminating this work was the primary
driver of improved latency in the Mound.

Allocation: The ability to replace copy-on-write in the hash ta-
ble was single-handedly responsible for more than 2x speedup on
the write-dominated workload. This improvement directly followed
from the reduced interaction with the allocator. A similar benefit
arose in the BST, where we were able to avoid allocating descrip-
tors, but did not affect the Mound, where descriptors are reused
from one operation to the next.

5 Rethinking Concurrent Data Structure De-
sign and Implementation

We highlight two implications of PTO on concurrent data structure
design.

Optimization on Strengthened Invariants: We first observe
that the use of a hardware transaction can strengthen some of the in-
variants of the original data structure. The most straightforward ex-
ample is that within a hardware transaction, the intermediate states
of an operation are not visible to other threads. In many nonblock-
ing data structures, operation descriptors are installed by the oper-
ation to indicate that a certain objects are involved in an operation,
and those descriptors are removed during the clean-up phase of the
operation, after its linearization point. In many algorithms, it will
be possible to avoid not only the installation and removal of de-
scriptors, but also their allocation and deallocation.

Similarly, some algorithms employ hazard pointers to prevent
objects from being made unreachable during critical periods in a
method’s execution. When the method is executed within a hard-
ware transaction, there is an invariant that memory accessed by
the transaction will not change due to external events. Thus it is
not possible for an object accessed by a transaction T to become
unreachable before T commits. While T must respect the hazard
pointers reserved by concurrent (non-transactional) threads, T need
not guard locations via hazard pointers during its own operation.
In an analogous manner, hardware transactions do not need to up-
date memory management epochs [12, 33]. This latter case clearly
cannot be handled by the compiler, since epochs are represented
with monotonically increasing counters. For short operations, such
as those on hash tables, epoch operations and their corresponding
memory fences can be a significant contributor to latency; for read-
only operations, epochs can again be a significant cost, due to their
introduction of memory fences.

Progress vs. Optimization Trade-off: A more aggressive
opportunity lies in weakening the progress guarantees of the origi-
nal algorithm to increase the opportunity for fast-path optimization.
There exist algorithms [16, 30] in which read-only lookup opera-
tions are wait-free. Reducing the progress of lookups to lock-free

www.manaraa.com

 50%

 75%

 100%

 125%

 150%

1 2 3 4 5 6 7 8Im
p
ro

v
e
m

e
n
t
to

 t
h
e
 L

o
c
k
fr

e
e
 A

lg
o
ri
th

m

Thread Number

PTO1
PTO2

PTO1+PTO2

(a) Composition of PTO on a Binary Search
Tree

 -25%

 0%

 25%

 50%

1 2 3 4 5 6 7 8Im
p
ro

v
e
m

e
n
t
to

 t
h
e
 L

o
c
k
fr

e
e
 A

lg
o
ri
th

m

Thread Number

PTO(Fence) PTO(NoFence)

(b) Fence Elimination on Mound

 75%

 100%

 125%

 150%

 175%

1 2 3 4 5 6 7 8Im
p
ro

v
e
m

e
n
t
to

 t
h
e
 L

o
c
k
fr

e
e
 A

lg
o
ri
th

m

Thread Number

PTO(Fence) PTO(NoFence)

(c) Fence Elimination on Binary Search Tree

Figure 5: Effectiveness of Specific Factors in PTO

can have non-local benefits by increasing the opportunity to opti-
mize the PTO fastpath of inserts and removals.

In the hash table case, we see a PTO insertion or removal can
modify the array in-place, as long as it increments the counter
within its hardware transaction. Doing so ensures that concurrent
lookups will not miss a value concurrently removed and inserted, at
the cost of the operation retrying when there is concurrency. If con-
currency between modifications and lookups is rare, or if modifica-
tions are, themselves, frequent, the optimization may outweigh the
added overhead (and reduced progress guarantees) of the modified
set. Modifications of this technique can be applied to algorithms
that use copy-on-write, marking, descriptors, simulated DCAS, and
indirection-based versioning of data.

In summary, we see significant potential to (re)design concurrent
data structures to be PTO-friendly. If the prefix succeeds with high
probability, then common costs, especially those related to memory
management (reference counts, hazard pointers, epochs, indirec-
tion), become less significant. A slow-path that bears these costs,
coupled with an unencumbered fast-path, may provide a “sweet
spot” for algorithm designers. When these techniques cease to be
performance bottlenecks, they may be employed to more rapidly
develop novel concurrent data structures.

6 Related Work
While there are a number of high-performance nonblocking data
structures, there are few methodologies for creating or accelerat-
ing them. Herlihy presented a universal construction for creating
nonblocking data structures [18], but its emphasis was progress,
not performance. Subsequent improvements [11] have increased
the practicality of universal constructions, particularly for wait-
free data structures. However, these techniques were designed be-
fore HTM became available in commodity microprocessors, and
their focus on progress still results in overhead relative to the best
ad-hoc nonblocking data structure designs. Similarly, Petrank et
al. [25, 43] have created methodologies for making lock-free data
structures wait-free, but without eliminating the overheads of the
baseline lock-free data structure.

A variety of combining techniques have gained prominence for
their ability to accelerate concurrent data structures [17]. Unfortu-
nately, these techniques do not perform well on search data struc-
tures [17], and they sacrifice nonblocking progress. In contrast, our
technique can perform well on search structures, and it preserves
the original progress guarantees.

Neelakantam et al. were among the first to use HTM to opti-
mize existing software [38]. Their focus was not on concurrency,

but rather on speculative optimization of a program trace. As in
our work, their system replaced unlikely code paths with explicit
transactional aborts. Our work builds upon these ideas by introduc-
ing the notions of progress and composition to their transformation,
and by extending it to concurrent code. We also add the option of
algorithm-specific optimizations, instead of limiting to automatic
compiler transformations.

Dice et al. were the first to analyze the impact of a real HTM sys-
tem on concurrent data structures [7]. In their work, they showed
that many concurrent applications could be simplified by attempt-
ing to execute operations in HTM, and then falling back to a single
global lock if the HTM operation did not succeed.

Perhaps most notably, our work demonstrates that the fallback
path is a significant design consideration. Early work on hardware
lock elision [40] suggested that a locking fallback would suffice.
Calciu et al. showed that optimizations to the lock-based fallback
path could have significant impact on throughput [4]. Similarly,
hybrid TM researchers have embraced the need for an intermedi-
ate point between HTM execution and serialized fallback.Our work
does the same for concurrent data structures, demonstrating that the
progress guarantees of the fallback path can play a significant role
in overall system throughput.

Recently, Dice et al. pointed out several subtle pitfalls [6] in the
lazy subscription technique [4]. We believe these issues do not ap-
ply to the PTO-accelerated data structures investigated in this paper.
The intuition is that in TLE, the execution of fallback code assumes
mutual exclusion. Speculative transactions inherit this assumption,
since they run the same code as the fallback. Any violation of the
mutual exclusion condition (even when observed by a speculative
transaction) may lead the program to reach a state that would not be
reachable in the original implementation. In PTO, the situation is
nuanced. A prefix transaction coalesces multiple steps of the origi-
nal implementation into a single super-step. Given that the original
implementation is nonblocking, no step assumes mutual exclusion,
and hence PTO will never cause the implementation to reach a state
that was not reachable in the original code. However, this situation
can lead to more aborts.

Yoo et al. studied the same Intel HTM implementation as us,
applying it to high-performance-computing applications [46]. Like
Dice et al., they employed HTM in a more ad-hoc fashion to a
number of applications. They identified certain techniques, like
transactional coarsening, that are captured by PTO. They also pre-
sented valuable guidelines for users of Intel’s HTM, such as the
importance of tuning retry parameters, and the possibility of differ-
ent behavior for read-only and writing hardware transactions. As

www.manaraa.com

we saw in Section 4, this latter difference plays a significant role in
the PTO BST and hash table algorithms.

Our techniques bear a complex relationship with the concept of
asynchronized concurrency [5]. Certainly ASCY explains why it
is so difficult to accelerate the skiplist. ASCY also provides in-
sight into the PTO-accelerated BST: we essentially remove from
the transactional fast-path those operations that are in opposition to
the ASCY principles. However, in the case of the hash table, we
see that sometimes it is beneficial to reduce the ASCY compliance
of the original data structure in order to accelerate the transactional
prefix. A weak reduction in ASCY (double-checking lookups) was
able to deliver substantial improvement by obviating copy-on-write.

7 Conclusions and Future Work
In this paper, we introduced a methodology for accelerating con-
current data structures by using transactional memory. Our tech-
nique involves creating a fast-path transaction that succeeds or fails
in bounded time, and a set of optimizations that can be applied to
that fast-path to eliminate latency. In evaluation on five data struc-
tures1, we saw performance benefits ranging from 50% to 3x for
the hash table and binary search tree. Even when the methodology
did not improve performance, we did not observe any significant
slowdowns.

Apart from performance, our methodology offers many other
benefits: It relies upon, and hence confirms the value of, strongly
atomic hardware transactions. It preserves nonblocking progress,
despite the absence of progress guarantees for current hardware
transactional memory. Our technique is oblivious to the capacity
of the underlying HTM. Lastly, it is both local and compositional.
This last point is crucial, as it allows data structure designers to use
existing mechanisms, such as lock-free DCAS, and then transac-
tionally accelerate them.

Among the many future directions this work encourages, we
highlight two. The first is for hardware designers, who we hope
will see this work as an encouragement to reduce the latency of
HTM boundary operations. As HTM becomes cheaper, we believe
that PTO will become even more profitable, especially for DCAS
replacement and other small transactions.

Secondly, we believe that the concurrent data structure commu-
nity may want to re-think its approach to data structure design.
For example, the accelerated BST dramatically outperforms the
skiplist, even though the un-accelerated skiplist has been shown,
repeatedly, to be among the most efficient and scalable lock-free
ordered sets. PTO makes costly operations, such as copy-on-write,
descriptor allocation, helping, and marking, inexpensive. This, in
turn, encourages the design of nonblocking data structures with
slower slow-paths, as long as they afford faster fast-paths.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grants CAREER-1253362 and CCF-1218530.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation.

8 References

[1] M. Abadi and L. Lamport. The Existence of Refinement
Mappings. Theoretical Computer Science, pages 253–284,
May 1991.

1The source code from this evaluation is available on Github at
mfs409/nonblocking.

[2] C. Blundell, E. C. Lewis, and M. M. K. Martin. Subtleties of
Transactional Memory Atomicity Semantics. Computer
Architecture Letters, 5(2), Nov. 2006.

[3] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M.
Swift, and D. A. Wood. Performance Pathologies in
Hardware Transactional Memory. In Proceedings of the 34th
International Symposium on Computer Architecture, San
Diego, CA, June 2007.

[4] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and
M. Herlihy. Invyswell: A Hybrid Transactional Memory for
Haswell’s Restricted Transactional Memory. In Proceedings
of the 23rd International Conference on Parallel
Architectures and Compilation Techniques, Edmonton, AB,
Canada, Aug. 2014.

[5] T. David, R. Guerraoui, T. Che, and V. Trigonakis. Designing
ASCY-compliant Concurrent Search Data Structures.
Technical Report EPFL-REPORT-203822, Ecole
Polytechnique Federale de Lausanne, 2014.

[6] D. Dice, T. Harris, A. Kogan, Y. Lev, and M. Moir. Pitfalls of
Lazy Subscription. In Proceedings of the 6th Workshop on
the Theory of Transactional Memory, Paris, France, July
2014.

[7] D. Dice, Y. Lev, V. Marathe, M. Moir, M. Olszewski, and
D. Nussbaum. Simplifying Concurrent Algorithms by
Exploiting Hardware TM. In Proceedings of the 22nd ACM
Symposium on Parallelism in Algorithms and Architectures,
Santorini, Greece, June 2010.

[8] A. Dragojevic, M. Herlihy, Y. Lev, and M. Moir. On The
Power of Hardware Transactional Memory to Simplify
Memory Management. In Proceedings of the 30th ACM
Symposium on Principles of Distributed Computing, San
Jose, CA, June 2011.

[9] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel.
Non-blocking Binary Search Trees. In Proceedings of the
29th ACM Symposium on Principles of Distributed
Computing, Zurich, Switzerland, July 2010.

[10] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scalable
NonZero Indicators. In Proceedings of the Twenty-Sixth
ACM Symposium on Principles of Distributed Computing,
Portland, OR, Aug. 2007.

[11] P. Fatourou and N. D. Kallimanis. A Highly-Efficient
Wait-Free Universal Construction. In Proceedings of the
23rd ACM Symposium on Parallelism in Algorithms and
Architectures, San Jose, CA, June 2011.

[12] K. Fraser. Practical Lock-Freedom. PhD thesis, King’s
College, University of Cambridge, Sept. 2003.

[13] V. Gramoli. More Than You Ever Wanted to Know about
Synchronization. In Proceedings of the 20th ACM
Symposium on Principles and Practice of Parallel
Programming, San Francisco, CA, Feb. 2015.

[14] T. Harris. A Pragmatic Implementation of Non-Blocking
Linked Lists. In Proceedings of the 15th International
Symposium on Distributed Computing, Lisbon, Portugal,
Oct. 2001.

[15] T. Harris, K. Fraser, and I. Pratt. A Practical Multi-word
Compare-and-Swap Operation. In Proceedings of the 16th
International Conference on Distributed Computing,
Toulouse, France, Oct. 2002.

[16] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. Scherer,
and N. Shavit. A Lazy Concurrent List-Based Set Algorithm.
In Proceedings of the 9th international conference on
Principles of Distributed Systems, Pisa, Italy, Dec. 2006.

www.manaraa.com

[17] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat
Combining and the Synchronization-Parallelism Tradeoff. In
Proceedings of the 22nd ACM Symposium on Parallelism in
Algorithms and Architectures, Santorini, Greece, June 2010.

[18] M. Herlihy. A Methodology for Implementing Highly
Concurrent Data Structures. In Proceedings of the Second
ACM Symposium on Principles and Practice of Parallel
Programming, Seattle, WA, Mar. 1990.

[19] M. Herlihy. Wait-Free Synchronization. ACM Transactions
on Programming Languages and Systems, 13(1):124–149,
1991.

[20] M. Herlihy. A Methodology for Implementing Highly
Concurrent Data Objects. ACM Transactions on
Programming Languages and Systems, 15(5):745–770, 1993.

[21] M. P. Herlihy and J. E. B. Moss. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In
Proceedings of the 20th International Symposium on
Computer Architecture, San Diego, CA, May 1993.

[22] Intel Corporation. Intel Architecture Instruction Set
Extensions Programming (Chapter 8: Transactional
Synchronization Extensions). Feb. 2012.

[23] C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory
Architecture and Implementation for IBM System Z. In
Proceedings of the 45th International Symposium On
Microarchitecture, Vancouver, BC, Canada, Dec. 2012.

[24] P. Jayanti. f-arrays: Implementation and applications. In
Proceedings of the 21st ACM Symposium on Principles of
Distributed Computing, Monterey, California, July 2002.

[25] A. Kogan and E. Petrank. A Methodology for Creating Fast
Wait-Free Data Structures. In Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel
Programming, New Orleans, LA, Feb. 2012.

[26] L. Lamport. How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Programs. IEEE
Transactions on Computers, C-28(9):241–248, Sept. 1979.

[27] Y. Lev and J.-W. Maessen. Split Hardware Transactions:
True Nesting of Transactions Using Best-Effort Hardware
Transactional Memory. In Proceedings of the 13th ACM
Symposium on Principles and Practice of Parallel
Programming, Salt Lake City, UT, Feb. 2008.

[28] Y. Liu, V. Luchangco, and M. Spear. Mindicators: A
Scalable Approach to Quiescence. In Proceedings of 33rd
International Conference on Distributed Computing Systems,
Philadelphia, PA, July 2013.

[29] Y. Liu and M. Spear. Mounds: Array-Based Concurrent
Priority Queues. In Proceedings of the 41st International
Conference on Parallel Processing, Pittsburgh, PA, Sept.
2012.

[30] Y. Liu, K. Zhang, and M. Spear. Dynamic-Sized
Nonblocking Hash Tables. In Proceedings of the 33rd ACM
Symposium on Principles of Distributed Computing, Paris,
France, July 2014.

[31] I. Lotan and N. Shavit. Skiplist-Based Concurrent Priority
Queues. In Proceedings of the 14th International Parallel
and Distributed Processing Symposium, Cancun, Mexico,
May 2000.

[32] V. Luchangco, M. Moir, and N. Shavit. Nonblocking
k-compare-single-swap. In Proceedings of the 15th ACM
Symposium on Parallel Algorithms and Architectures, San
Diego, CA, June 2003.

[33] P. E. McKenney. Exploiting Deferred Destruction: An
Analysis of Read-Copy-Update Techniques in Operating
System Kernels. PhD thesis, OGI School of Science and
Engineering at Oregon Health and Sciences University, 2004.

[34] M. Michael. Hazard Pointers: Safe Memory Reclamation for
Lock-Free Objects. IEEE Transactions on Parallel and
Distributed Systems, 15(6):491–504, June 2004.

[35] M. M. Michael and M. L. Scott. Simple, Fast, and Practical
Non-Blocking and Blocking Concurrent Queue Algorithms.
In Proceedings of the 15th ACM Symposium on Principles of
Distributed Computing, May 1996.

[36] A. Morrison and Y. Afek. Fast Concurrent Queues for x86
Processors. In Proceedings of the 18th ACM Symposium on
Principles and Practice of Parallel Programming, Shenzhen,
China, Feb. 2013.

[37] S. S. Muchnick. Advanced Compiler Design Implementation.
Morgan Kaufmann, 1997.

[38] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and
C. Zilles. Hardware Atomicity for Reliable Software
Speculation. In Proceedings of the 34th International
Symposium on Computer Architecture, San Diego, CA, June
2007.

[39] A. Prokopec, N. Bronson, P. Bagwell, and M. Odersky.
Concurrent Tries with Efficient Non-Blocking Snapshots. In
Proceedings of the 17th ACM Symposium on Principles and
Practice of Parallel Programming, Feb. 2012.

[40] R. Rajwar and J. R. Goodman. Speculative Lock Elision:
Enabling Highly Concurrent Multithreaded Execution. In
Proceedings of the 34th IEEE/ACM International
Symposium on Microarchitecture, Austin, TX, Dec. 2001.

[41] N. Shafiei. Non-blocking Patricia Tries with Replace
Operations. In Proceedings of 33rd International Conference
on Distributed Computing Systems, Philadelphia, PA, July
2013.

[42] H. Sundell and P. Tsigas. Fast and Lock-Free Concurrent
Priority Queues for Multi-Thread Systems. Journal of
Parallel and Distributed Computing, 65:609–627, May 2005.

[43] S. Timnat, A. Braginsky, A. Kogan, and E. Petrank.
Wait-Free Linked-Lists. In Proceedings of the 16th
International Conference on Principles of Distributed
Systems, Rome, Italy, Dec. 2012.

[44] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht,
C. Barton, R. Silvera, and M. Michael. Evaluation of Blue
Gene/Q Hardware Support for Transactional Memories. In
Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, Minneapolis,
MN, Sept. 2012.

[45] L. Xiang and M. L. Scott. Compiler Aided Manual
Speculation for High Performance Concurrent Data
Structures. In Proceedings of the 18th ACM Symposium on
Principles and Practice of Parallel Programming, Shenzhen,
China, Feb. 2013.

[46] R. Yoo, C. Hughes, K. Lai, and R. Rajwar. Performance
Evaluation of Intel Transactional Synchronization Extensions
for High Performance Computing. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, Denver, CO, Nov. 2013.

